Synergistic Impact of Air Pollution and Heat on Health and Economy in India

Abstract

In recent years, developing countries have been grappling with two significant environmental challenges—air pollution and increasing temperature. The impact of these issues on health and the economy has been extensively studied, leading to a growing body of literature highlighting their individual consequences. Understanding the synergistic effect of air pollution and increasing temperature on human well-being is a new topic of research that has received little attention in developing nations.

This chapter, published in the book The Climate-Health-Sustainability Nexus: Understanding the Interconnected Impact on Populations and the Environment (Springer), aims to address this gap in knowledge by thoroughly examining the existing literature to understand the combined influence of these environmental stressors and their implications for global health and the economy. We look into the trends of global exposure to air pollution and temperature and explore the pathophysiological pathways through which air pollution and increasing temperature affect human health. Our findings point to a severe lack of evidence on the synergistic impact of the two on human health in India. In the face of increasing climate vulnerability, the Indian economy is exposed to large degrees of risk through direct and indirect costs. It is crucial that the interplay between air pollution and heat be studied in depth. By dissecting these pathways, policymakers and healthcare professionals can develop more targeted strategies to mitigate the combined impacts of both on public health.

Finally, we focus on the health and economic co- benefits of implementing interventions to reduce air pollution and combat heat waves. By addressing these challenges in tandem, there is an opportunity to achieve greater overall benefits for both human well-being and economic prosperity. Through a deeper understanding of these interconnected challenges, we can strive for a healthier and more sustainable future for all, especially for those most vulnerable to poor environmental quality.

Read more

SFC Perspectives on Adaptation and Resilience, Climate Policy, Energy Transitions, and Environmental Governance and Policy

Overview

SFC Perspectives are intended to stimulate discussion by providing an overview of key issues and avenues for action to inform India’s sustainable development trajectory.

Read our Perspectives on:

1. Adaptation and Resilience: Building systems that allow India to adapt to climate impacts (by Aditya Valiathan Pillai and Tamanna Dalal)
2. Perspectives on Climate Policy: Embedding a development-centric, climate-ready approach to policymaking (by Aman Srivastava, Easwaran J Narassimhan and Navroz K Dubash)
3. Enabling the Energy Transition: Technology, politics & institutions in India’s energy system (by Ashwini K Swain, Sarada Prasanna Das, Suravee Nayak, Catherine Ayallore and Navroz K Dubash)
4. Perspectives on Environmental Governance and Policy: Systemic transformations to limit the health burden of air pollution (by Bhargav Krishna, Shibani Ghosh, Arunesh Karkun and Annanya Mahajan)

Perspectives on Adaptation and Resilience: Building systems that allow India to adapt to climate impacts

Introduction

Climate projections and the lived reality of weather events drive calls for urgent and concerted attention to climate adaptation. But what does this mean in practice? Indeed, seen through a conservative lens, one could quite convincingly argue that India and several other climate vulnerable countries have a long and storied history of reducing disaster mortalities in some areas. They should – in theory – be able to build sufficient reactive capacity to deal with climate impacts. Both India and Bangladesh have, for example, used policy and awareness building tools to drastically reduce annual deaths due to cyclones. This perspective paper, however, argues that the scale and complexity of the climate challenge merits serious consideration of systemic change, and a re-examination of what is needed for economy and society to thrive in an era of frequent, and often ravaging, climate impacts.

This effort is particularly relevant to India’s present developmental moment. Three decades of sustained growth have established an economy characterised by expanded trade, infrastructural advances, and both greater wealth and inequality. This emergence coincides uneasily with alarming manifestations of a changing climate. India’s deep vulnerability to climate change is likely to worsen
as impacts become more frequent and intense in its teeming cities, along a 6100 km-long coastline, and across a mountain range that supplies water to a third of the world’s population. How does a modern economy simultaneously protect the gains of hardwon growth while climate-proofing the future? And, as the Indian state evolves, how should it shape itself to be appropriately responsive to these new threats?

Read more

Impact of heatwaves on all-cause mortality in India: A comprehensive multi-city study

Background

 

Heatwaves are expected to increase with climate change, posing a significant threat to population health. In India, with the world’s largest population, heatwaves occur annually but have not been comprehensively studied. Accordingly, we evaluated the association between heatwaves and all-cause mortality and quantifying the attributable mortality fraction in India.

 

Methods

 

We obtained all-cause mortality counts for ten cities in India (2008–2019) and estimated daily mean temperatures from satellite data. Our main extreme heatwave was defined as two-consecutive days with an intensity above the 97th annual percentile. We estimated city-specific heatwave associations through generalised additive Poisson regression models, and meta-analysed the associations. We reported effects as the percentage change in daily mortality, with 95% confidence intervals (CI), comparing heatwave vs non-heatwave days. We further evaluated heatwaves using different percentiles (95th, 97th, 99th) for one, two, three and five-consecutive days. We also evaluated the influence of heatwave duration, intensity and timing in the summer season on heatwave mortality, and estimated the number of heatwave-related deaths.

 

Findings

 

Among ∼ 3.6 million deaths, we observed that temperatures above 97th percentile for 2-consecutive days was associated with a 14.7 % (95 %CI, 10.3; 19.3) increase in daily mortality. Alternative heatwave definitions with higher percentiles and longer duration resulted in stronger relative risks. Furthermore, we observed stronger associations between heatwaves and mortality with higher heatwave intensity. We estimated that around 1116 deaths annually (95 %CI, 861; 1361) were attributed to heatwaves. Shorter and less intense definitions of heatwaves resulted in a higher estimated burden of heatwave-related deaths.

 

Conclusions

 

We found strong evidence of heatwave impacts on daily mortality. Longer and more intense heatwaves were linked to an increased mortality risk, however, resulted in a lower burden of heatwave-related deaths. Both definitions and the burden associated with each heatwave definition should be incorporated into planning and decision-making processes for policymakers.

Read more